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Abstract— Current Systems-On-Chip execute applications that demand
extensive parallel processing. Networks-On-Chip (NoC) provide a struc-
tured way of realizing interconnections on silicon, and obviate the limita-
tions of bus-based solutions. NoCs can have regular or ad hoc topologies,
and functional validation is essential to assess their correctness and
performance. In this paper, we present a flexible emulation environment
implemented on an FPGA that is suitable to explore, evaluate and
compare a wide range of NoC solutions with a very limited effort. Our
experimental results show a speed-up of four orders of magnitude with
respect to cycle-accurate HDL simulation, while retaining cycle accuracy.
With our emulation framework, designers can explore and optimize a
range of solutions, as well as characterize quickly performance figures.

I. INTRODUCTION

In the near future, System-On-Chip consumer devices will contain
billions of transistors thanks to nanoscale technologies, but will
face additional constraints. Intercommunication requirements of SoCs
made of hundreds of cores will not be feasible using a single shared
bus or a hierarchy of buses due to their poor scalability with system
size and their shared bandwidth among all the attached cores.

Network-On-Chip (NoC) has been proposed as a promising re-
placement for buses and dedicated interconnections [1], [6] to solve
the scalability and complexity problem. NoCs involve the design of
network interfaces to access the on-chip network, the selection of
suitable protocols and topologies of switches to transport the data.
Hence, the NoC paradigm implies a new complex design and research
topic for on-chip communication. Presently, concrete options for NoC
topologies and interfaces have been proposed at different levels of
abstraction [10], [7], [9] and some even implemented onto FPGAs for
functional validation [8], [2]. Nevertheless, these different physical
implementations onto Field Programmable Gate Arrays (FPGAs) are
limited in flexibility and do not enable a full test of different actual
realizations of NoC on silicon. Moreover, an architectural exploration
of the involved design parameters such as packet size, number of
switches or topologies implies a complete redesign of the physical
implementation on the FPGA, which is a time-consuming effort.

In this paper, we present a complete mixed HW-SW NoC emulation
framework where a wide range of NoC features (e.g. number of
switches or connecting elements, topologies, etc.) can be easily
instantiated and compared at the physical level. As a result, this em-
ulation framework provides a consistent way to test the performance
achieved by actual physical realizations of NoCs on silicon at a very
high speed (16000 times faster than a HDL simulator).

The remainder of the paper is organized as follows. In Section II,
we describe some related work. In Section III, we present the
architecture of our emulation framework. In Section IV, we detail
how the emulation process of NoC systems is performed with our
platform. In Section V, we show with several experiments the speed
of our emulation framework for functional validation of real-life NoC
implementations. Finally, in Section VI, we draw our conclusions.

II. RELATED WORK

In the last years, significant research has been done to evaluate
the design and implementation features of NoC at its different levels
of abstraction. To provide accurate functional validation (i.e. circuit
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level), several approaches have been implemented in FPGAs. In [8]
and [2], NoCs with a mesh-based topology and packet-switching as
communication mechanism shows the effectiveness of NoC. Also,
other NoC architectures (e.g. torus) and designs of switches/routers
have been ported to FPGAs in order to validate their NoC features
(e.g. packet sizes, switching-mode) based on additional HDL sim-
ulations [9], [15]. These previous approaches can validate several
NoC implementations features, but none of them is designed to
exhaustively test the details of NoC topologies and traffics as ours.

To evaluate in detail different architectural alternatives reducing the
cost of synthesizable NoC design, several cycle-accurate simulation
infrastructures in VHDL, SystemC or combinations of both have
appeared in the recent years. In [12], VHDL-based cycle-accurate
models are employed to evaluate the latency, throughput and other
features in mesh-based and hierarchical NoC topologies. In [5] a
modeling environment is described for custom NoC topologies based
on SystemC. The main difference with our approach is that their
simulations have a much larger execution time compared to our
physical NoC emulation environment.

Next, while trying to increase the simulation speed of VHDL envi-
ronments but preserving its cycle-accurate behavior, several environ-
ments based on SystemC or custom language have been proposed. [7]
proposes a SystemC-based simulation environment for several NoCs
including a real-time operating system. Then, [3] presents a mixed
VHDL/SystemC implementation and simulation methodology using
a template router to support several interconnection networks. While
the previous approaches enable the fast exploration of the main
features of NoC designs as our proposed emulation platform, their
level of accuracy in the estimations and their simulation speed
is more limited compared to our complete physical emulation of
parameterizable NoCs.

Other relevant approaches improving the speed of cycle-accurate
NoC simulation to get close to the speed of physical emulation
have been proposed lately in high-level abstraction languages such
as C or C++. In [4] a C-based interconnection network simulator
to study power-performance trade-offs at the architectural level is
described. Also, [6] presents a NoC design methodology guided
by a parameterizable NoC architecture executed in a high-level
C++-like event simulator. Although these approaches attain high
simulation speeds (sometimes close to real hardware), they cannot
obtain detailed statistics of final physical implementation systems as
our emulation framework does.

Finally, at high-level of abstraction, algorithms and analytical mod-
els have been proposed to achieve fast rough estimations of overall
cost of NoCs using graphs representions [13], [11]. Such analytical
approaches can be used in early stages of NoCs development, but do
not enable accurate architectural exploration and functional evaluation
as the emulation environment we propose in this paper.

III. NOC EMULATION ARCHITECTURE

As previously mentioned in the introduction, our emulation ap-
proach has been designed in a modular way to easily implement
various custom NoC topologies and architectures. An overview of
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Fig. 1. NoC Emulation Framework

the architecture of our framework is depicted in Figure 1. It consists
of three main elements, which are mapped onto an FPGA board with
a hard-core processor. In this case, we have used a Xilinx Virtex 2
Pro v20 and a Power PC. The hard-core processor of the FPGA is
used to orchestrate the emulation process in a flexible way. Then,
the monitor module provides the interface to communicate with the
host PC and to show the produced statistics onto its screen through
the serial port. Finally, the main element of our NoC emulation
framework is the NoC programmable emulation platform. It is a
module that consists of the necessary elements to emulate realistic
networks of switches: Traffic Generators (TGs), Traffic Receptors
(TRs) and a user-defined set of interconnections between the switches
of the network as depicted on Figure 2. Currently, the synthesizable
switches are generated using the Xpipes compiler [5], but our
proposed framework is directly applicable to any other type of NoC
architecture. The previous modules communicate using a common
bus available in our FPGA board called On-chip Peripheral Bus (i.e.
OPB in Figure 1).

Our emulation platform (see Figure 2) consists of four types
of components: a control module, several types of TGs/TRs and
a network of switches. The control module and the TGs/TRs are
fully addressable by the processor for configuration and statistics
acquisition purposes. Also, the control component can communicate
with all the components of the platform by sending broadcast control
signals to all of them. Each TG generates different traffic (see
Subsection III-A) and injects the packets into the network of switches
through its dedicated connection (NoC Interface). Then, after passing
through the network of switches, the traffic is received and analyzed
by a set of TRs (see Subsection III-B). Finally, to enable an efficient
scalability in the amount of TGs/TRs, we have included in the
platform a set of independent busses to connect them. Hence, using
our architecture it is possible to plug up to 1024 TR/TG, assuming
that a larger number of traffic devices would not be fit on actual
FPGAs. As a result, this emulation platform enables to instantiate
and emulate real-life NoCs on current FPGAs.

In the following subsections we describe in detail the functionality
of the main available components in our emulation platform (i.e.
TGs/TRs and control module).

A. Traffic Generators

We define a Traffic Generator as a module which is programmable
by a processor and controllable by a control module. In order to
make it programmable, a bench of registers is addressable by the
processor in each TG. Some control signals are used to communicate
with its control module. Finally, a network interface is available to
inject traffic into the network. As this component must be able to
explore/analyze many characteristics of NoCs implementations, the
traffic generated by each TG is a function of the content of its
registers. This feature gives us the possibility to generate different
types of traffic with a single type of TG, and as the configuration of
the registers of the TGs is done by the processor, we do not need
to resynthesize the platform to perform different emulations of NoC
traffic. For our first instance of the emulation framework, we have
developed two types of TGs.
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The first one is able to generate traffic according to several
stochastic models (e.g. normal distribution, burst-modes, etc.). The
user can give as an input the wanted data rate and the packets
characteristics. This type of traffic generator is useful for theoretical
studies with stochastic traffic models.

The second type of traffic generator that we have developed is
a trace-driven TG. In our case, a trace is an image of real NoC
traffic coded with 3 pieces of information, namely a packet length, a
destination and a relative time stamp that indicated when to inject the
packet into the NoC. In this case the TG receives during the emulation
a continuous flow of traces from the processor and the TG generates
some traffic following the characteristics of the received trace. This
type of TG can be used to emulate real NoC traffic streams/patterns
fetched from any real application. As a result, these traces can include
input traffic generated by TGs according to the traffic received by TRs
if the input traces include such behavior.

B. Traffic Receptors

Similarly to the TGs, we have included two different implemen-
tations of TRs in our emulation platform. On the one hand, both
possess as common functionality the acknowledgment of the received
flits. In addition, both types enable two debug modes. First, it can
perform an automatic check of the flits received via CRC check to
guarantee that they are the correct ones sent by the TGs. Second, for
manual checking, the content of the flits can be shown on the screen
of the host PC to verify their content. The use of two different TRs
implementations allows having an efficient implementation according
to the required type of reports to generate and a suitable debug tool
for the network.

On the other hand, the two types of TRs provide different kind
of statistics to the user. The first type generates a histogram about
the number of acknowledged flits. The second type generates a trace
report for each received packet. The trace has the same format as
the one used by the TGs. By this way the processor can compute a
detailed analysis (e.g. latency, arrival time) for each delivered packet.

C. Control Module

The control module is addressable by the processor and takes
care of the synchronization of all traffic devices in the platform (i.e.
TGs and TRs). For instance, it makes sure that all devices start the
emulation at the same time. Also, the controller has the ability to reset
the whole platform or even stop it. This is useful if the emulation
platform needs to be programmed to execute several consecutive
emulations.

Since several types of TGs/TRs can be used, one specific control
module has been developed for each kind to reduce the amount of
spent logic (see Section V). Then, to be able to mix them in the same
emulation, we have included the possibility to map several control
modules simultaneously.
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Fig. 3. Our NoC Emulation Flow

IV. VERSATILE EMULATION FRAMEWORK

The main feature of our emulation framework and its flow is the
simple initialization and statistics acquisition of any emulation in
the platform at circuit level without re-synthesizing and remapping
the whole system. This is possible thanks to its mixed HW-SW
structure. The regular FPGA flow would imply a new synthesis for
each emulation. Because of the software flexibility, we have a way to
perform many emulations without the inconvenience of synthesizing
each time. The emulation flow in our FPGA environment varies
slightly in case a stochastic emulation is performed or a trace-based
one. An overview of these two emulation flows is shown in Figure 3.

In the following subsections we describe in detail the internal
phases in each flow, which are perfectly applicable to any kind of
TGs/TRs and statistics to be attained from the NoC emulation.

A. Stochastic Emulation Flow

As Figure 3 indicates, from the hardware point of view we can
emulate at the circuit level a wide range of switching configurations of
a NoC. The specific topology used in the emulations is defined in the
first phase (top box in Figure 3) by configuring several parameters in
the Verilog code of our platform. For the sake of simplicity, currently
we use hand-coded custom topologies. However, in future work we
will develop a tool that automatically generates any type of physical
topology (i.e. any number of switches and interconnections between
them) based on the Xpipe NoC Compiler [5].

After the generation of the NoC topology, the initialization of the
stochastic traffic is performed (Platform initialization box in Figure 3)
using the hard-core processor included in the FPGA (i.e. Power PC).
This processor runs a compiled C file that contains the information
about the traffic the user wants to generate. As we have indicated in
Section III, the traffic characteristics can be completely configured
by defining some pointers in the C code executed by the processor,
which will then write that information in the memory addresses of
the TGs; thus, configuring the traffic they inject in the network of
switches. This mechanism provides a high flexibility because no time-
consuming resynthesis of the HW involved is needed to emulate
and study a wide range of NoC implementation parameters. After
configuring the TGs/TRs during the initialization phase, the processor
is self-configured to wait and fetch the generated statistics at the end
of the simulation.

After the configuration of emulation traffic, the system works
autonomously and the TGs/TRs acquire the information to generate
the statistics demanded by the user from the C configuration file.

Finally, at the end of the emulation, the stored statistics are
read by the processor, which displays a summary report about the

behavior and congestion of the network on the screen of the user
using the monitor module (see Section III) and its serial interface to
the host PC. Regarding the statistics that can be obtained for NoC
research and functional validation, the following type of information
is provided: (1) average latency in the emulation, (2) amount of
packets sent/received in each TG/TR, (3) delivery time for each burst
of flits, (4) total emulation time and (5) histogram of flits delivered
according to the granularity defined by the user. Additional types of
information for NoC studies (e.g. link congestion in the network of
switches) can be easily added to our emulation framework if desired.

B. Trace-based Emulation Flow

The trace-based emulation flow is similar to the previously ex-
plained flow in the way the configuration of the network parameters
and the TGs/TRs types is concerned. However, several differences
exist in the way the emulation is performed. In this case, instead of
setting the stochastic parameters to describe a certain traffic model
(e.g. uniform, bursts), a trace is used to represent realistic NoC traffic.
In our model, a trace contains a collection of packet descriptors.
Typically, the used traces are large since they model traffic generated
by fully executing real-life applications. As a result, to enable a real-
time emulation with a continuous injection rate of the packets through
the emulated NoC, we have designed the packet descriptor to use only
32 bits and the whole trace can be loaded on the RAM placed on the
FPGA board. For example, one million packets will consume 4MB
of memory for the trace. Also, for this type of emulation, we have
designed a special type of TR that is able to extract from a packet
the latency of packets through the NoC. Then, the TR can report it.

This flow takes advantage of the software running in the processor
of our HW/SW emulation framework to configure some features (e.g.
injection rate) that are not defined in the NoC traces in the memory.
Thus, performing several emulations does not imply the re-synthesis
of any hardware part.

C. Generalization of our Emulation Flow

The strongest advantage of our approach is the possibility to
establish a general HW/SW emulation framework to functionally
validate and explore real-life NoC implementations. This is achieved
by creating a link between a programmable processor and a fully
HW emulation environment. To design this general approach we can
distinguish two main phases.

The first phase is the design of the interconnection network of
switches within the emulation environment. This is done in Verilog
in our research, but it could be done in any HDL language. This
environment has to be addressable (i.e. configurable by writing
into memory addresses) by the processor. Thus, it has an interface
compliant with the processor. In our case, we have used the OPB bus,
which is the standard bus used to communicate with Xilinx hard-core
processors (i.e. PowerPCs) but any other board and/or processor can
be used instead since our HW emulation environment is platform-
and processor-independent.

The second phase is how to reconfigure the HW environment
using the processor, i.e. software reconfiguration instead of HW
re-synthesis. To this end, we use a C file that is executed by the
processor to read and write at the right addresses of the HW part of
the emulation environment (e.g. TGs/TRs). We have assumed that for
this step, the C language is appropriate because compiled C language
models can control the bus access and can implement any complex
algorithm. In fact, several inter-dependent emulations with different
inputs for a certain algorithm can be sequentially simulated, which
can be very useful to cover many cases in the emulation.

This previous HW/SW emulation approach is easily applicable to
any type of NoC such as those proposed by [8], [2]. Moreover, the
type of information (e.g. performance or latency statistics) that can
be extracted from our framework is really extensive for a wide range
of NoC research purposes.
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TABLE I
IMPLEMENTATION FIGURES OF OUR EMULATION FRAMEWORK ON A
VIRTEX-II PRO FPGA

[ Device | Number of slices | Board percentage (%) |
TG stochastic 719 7.8
TG trace-driven 652 7
TR stochastic 371 4
TR trace-driven 690 7.4
Control module 18 0.2

V. EXPERIMENTAL RESULTS

We have tested our emulation approach with several NoC imple-
mentations to assess its speed and versatility for functional validation.
In all the experiments our emulation was clocked at SOMHz. The
choice of the clock speed is very sensitive and important for enabling
emulation of real-life NoC traces with several billions of packets
for a single application. In addition, the clock heavily influences the
synthesis results on the FPGA. If the clock is slowed down, the FPGA
synthesizer will be able to increase the critical path, thus reducing the
area used by the NoC framework onto the FPGA and making easier
the routing. The main caveat of such systems is the limited emulation
speed. In our case, our approach is able to work at such frequency
by using very optimized code for the TGs/TRs, which enables our
FPGA (i.e. Virtex 2 Pro v20) to work at S0MHz or above.

Our first set of experiments has been devoted to evaluate how
efficiently our code can be mapped with state-of-the-art synthesis
tools (e.g. Xilinx EDK and ISE tools) onto an FPGA. In this case we
have considered the instantiation of a NoC proposed in [5] including 6
switches and 4 TGs and 4 TRs. It uses 7387 Xilinx slices (79% of our
device). The results for each main HW component of our emulation
platform are shown in Table I. It shows that each TG takes about
700 slices (7.5% of the total space on the board) and a TR takes
on average about 530 slices (6% of the total space). These results
indicate that our code for generating both TGs/TRs can be efficiently
mapped onto the available space of the FPGA. Therefore, using this
small amount of logic for each pair of TG/TR (i.e. equivalent to one
NoC core) makes feasible to instantiate many of them to emulate a
NoC with many cores (i.e. more than 40 switches and TGs/TRs) in
present larger FPGA devices (e.g. Virtex 2 Pro v40).

In our second set of experiments we have tested the feasibility
of using NoC workloads (e.g. amount of packets, packet sizes,
congestion rates, etc.) in different emulation/simulation environments
to identify the speed up that could be obtained with our emulation
approach. The results with different emulation/simulation approaches
are shown in Table II. As Table II shows, emulations composed
of 16 million packets traces (frequently considered in other simu-
lation environments as realistic inputs) take just 3.2 seconds on our
emulation platform clocked at 50 Mhz whereas several hours are
needed at least in other approaches. Moreover, real-life workloads
of NoCs with more than one billion packets emulations require just
few minutes compared to other approaches were days or weeks are
required (i.e. more than 4 orders of magnitude of final speedup on
our side). Evidently, to validate a NoC structure, though traditional
simulators could reduce the complexity of silicon design, only phys-
ical implementations using complete real-life workloads can provide
the ultimate validation for such complicate systems, as our emulation
approach enables.

Finally, to evaluate the reconfiguration effort of our approach
in case of NoC features variations, we have varied the topology
of the interconnections and number of NoC switches. The effort
of modifying a physically implemented design with 4 switches
to other configurations with 8 and 16 switches and completely
different interconnections (e.g. meshes, torus, etc.) has taken us few
hours, including the partial re-synthesis of the HW component of
our emulation framework. In addition, note that changes in packet
sizes, flit sizes, flits per packet, latencies, etc. take a matter of

TABLE 11
COMPARISONS BETWEEN EMULATION/SIMULATION NOC ENVIRONMENTS
(* EACH PACKET IS 10 CLOCK CYCLES ON AVERAGE)

Simulation Speed Simulation Time

Mode (cycles/sec) (16x108 packets*)  (1x 109 packets™)
Verilog 3.2 K | 13 hours 53 minutes 36 days 4 hours
(ModelSim)

System C 20 K 2 hours 13 minutes 5 days 19 hours
(MPARM)

Our emulation 50 M 3.2 sec 3’ 20 sec

minutes instead of hours (or even days) as other custom-designed
NoC functional verification approaches do. In fact, in our HW/SW
emulation approach they only affect a C file that is executed by the
processor. This implies a modification and recompilation of a C file,
which is several orders of magnitude faster (i.e. few seconds) than a
HW re-synthesis of many hours.

VI. CONCLUSIONS

New consumer products have increasingly higher demands and
complex SoCs are used to implement such systems under the tight
time-to-market constraints. NoCs solutions have been proposed to
reduce the complexity of integrating tens of cores on-chip, but
none of them allows complete architectural studies of different NoC
realizations on silicon. In this paper, we have presented a flexible HW-
SW emulation environment implemented on an FPGA that is suitable
to explore, evaluate and compare at the physical level various custom
NoC solutions for these new consumer systems with a very high
emulation speed and low implementation effort. Moreover, as we have
shown, a large set of important implementation and design parameters
for actual NoCs can be evaluated on this proposed emulation platform
in a very short interval, thanks to its HW-SW framework design to
configure the FPGA and its fast emulation speed.
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